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Abstract. Using a resonant detector in M̈ossbauer spectroscopy can result in a spectral linewidth
that is 1.460, where0 is the linewidth of the excited-state nuclear level. As is well known,
the minimum linewidth obtained in conventional Mössbauer experiments is 20. The quantum
mechanical calculation using a nuclear resonant detector, which predicts this result, is presented.
The fundamental equations describing the system are solved by means of perturbation theory in the
frequency domain. The model system is taken to consist of a source nucleus, an absorber nucleus,
and the resonant-detector nucleus. As noted, the minimum linewidth obtained in a Mössbauer
spectrum taken under these conditions is found to be appreciably smaller than the linewidth obtained
in a conventional M̈ossbauer set-up. Thus the conversion-electron, resonant-detector scheme may
be used to advantage in experiments requiring the highest possible energy resolution.

1. Introduction

A conventional M̈ossbauer-effect apparatus [1] consists of a radioactive source, an absorber
containing the same type of nuclei in the ground state, and a radiation detector such as a
proportional counter. One measures the transmitted gamma radiation as a function of the
relative velocity of the source with respect to the absorber. It is well known that the minimum
linewidth obtainable in such a conventional transmission Mössbauer experiment is twice the
natural linewidth of the excited state. In this paper it will be shown that another experimental
set-up will lead to a linewidth that is actually smaller. In experiments requiring the highest
possible energy resolution, this approach may prove useful. The difference, between the
proposed experimental set-up and a conventional Mössbauer set-up, is due to the nature of
the detector. Instead of a conventional radiation detector, such as a proportional counter or a
NaI detector, one uses a nuclear ‘resonant’ detector. The resonant detector contains ground-
state nuclei, which are in resonance with the stationary excited-state source nuclei. In this
experimental configuration, as also often used in a conventional set-up, the absorber is moved
with respect to the source and the detector which are both stationary. The experiment proceeds
by detecting the conversion electrons generated in the resonant detector as a function of the
velocity of the absorber.

A quantum mechanical model system consisting of a source nucleus, an absorber nucleus,
and a resonant-detector nucleus, along with the associated resonant photons and conversion
electrons, will be used to analyse the results from the proposed experimental configuration.
Since we are interested in a minimum linewidth, it is reasonable to go to the thin absorber limit.
In our model this corresponds to describing the absorber as having one resonant nucleus.
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2. Quantum mechanical model

The general method used in this paper is discussed in Heitler [2], Harris [3], and in a more
recent article [4]. The method applies quantum mechanical perturbation theory in the frequency
domain to obtain a set of coupled equations. The Hamiltonian of the system is divided into two
parts.H0 is the unperturbed part which describes the evolution of the nuclear states, the free
radiation field and conversion electrons in the absence of coupling between the nuclear states,
the radiation field and the conversion electrons. The eigenstates ofH0 correspond to nuclear
states, the states of the free radiation field, and the states of the conversion electrons. The
perturbing part of the Hamiltonian is denoted byV and is responsible for making transitions
between the nuclear levels.

The actual state of the system is then expressed as

|9(t)〉 =
∑
l

al(t) e−iElt/h̄|ϕi(0)〉 (1)

where|ϕl(0)〉 is an eigenstate ofH0 andEl the corresponding energy. Solving the Schrödinger
equation leads to a set of coupled differential equations relating the expansion coefficients
al(t). Heitler [2] has shown that in order to satisfy the boundary conditions att = 0, one has
the following set of coupled differential equations.

ih̄
dal
dt
=
∑
q

aq(t) ei(ωl−ωq)t 〈ϕl(0)|V |ϕq(0)〉 + ih̄δ1nδ(t) (2)

whereωl − ωq = (El − Eq)/h̄, δ1n, is the Kronecker delta andδ(t) the Dirac delta function.
Introducing the Fourier transform [3] and inserting the causality condition [2] allows (2) to be
re-written in the frequency domain

(ω − ωl + iε)Al(ω) =
∑
q

Aq(ω)
Vlq

h̄
+ δ1n (3)

whereVlq is the matrix element inducing a transition from theqth unperturbed state to thelth
unperturbed state

Vlq = 〈ϕl(0)|V |ϕq(0)〉. (4)

The advantage of the set of equations (3), is that we now have only a linear, coupled system.
Consider a system whose initial condition is as follows. We have an excited nucleus,

having energy ¯hω0, at the origin of a coordinate system, an absorber nucleus, whose excited-
state energy is ¯hω′0, in the ground state (nucleus 1) situated at positionEr1, and another ground-
state nucleus, having an excited-state energy ¯hω0, at positionEr2 (nucleus 2). The last nucleus,
nucleus 2, represents the resonant detector. The absorber nucleus is situated between the source
nucleus and the resonant-detector nucleus. The evolution of the quantum system composed of
the three nuclei, the radiation field and the conversion electrons will be investigated below. In
the following, we will assume that the recoilless fractions [1] of the emission and absorption
processes are one, which is however, not an essential hypothesis.

In applying the mathematical formalism to our system, the following amplitudes can be
defined:

• A(ω) is the amplitude corresponding to the source nucleus excited (¯hω0), the other two
nuclei in the ground state, and no photons or conversion electrons present;
• Bk(ω) is the amplitude corresponding to all nuclei in ground state, a photon of wavenumber
Ek and energy ¯hωEk present, and no conversion electrons present;
• Ci(ω) (i = 1, 2) is the amplitude corresponding to nucleus at positionEri excited, all other

nuclei in ground state, and no photons or conversion electrons present;
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• D Ep(ω) is the amplitude corresponding to having a conversion electron from the source
nucleus present, having momentumEp, all nuclei in the ground state, and no photons
present;
• Ei Ep(ω) is the amplitude corresponding to having a conversion electron from nucleusi

(i = 1, 2) present, all nuclei in ground state, and no photons present.

At t = 0, only the source nucleus is excited, so we have the following set of coupled
equations

(ω − ω0 + iε)A(ω) = 1 +
∑
Ek

HEk
h̄
BEk(ω) +

∑
Ep

H Ep
h̄
D Ep(ω) (5)

(ω − ωEk + iε)BEk(ω) =
H ∗Ek
h̄
A(ω) +

H ∗Ep
h̄

e−iEk·Er1C1(ω) +
H ∗Ek
h̄

e−iEk·Er2C2(ω) (6)

(ω − ω′0 + iε)C1(ω) =
∑
Ek

HEk
h̄

eiEk·Er1BEk(ω) +
∑
Ep

H Ep
h̄

ei Ep·Er1/h̄E1Ep(ω) (7)

(ω − ω0 + iε)C2(ω) =
∑
Ek

HEk
h̄

eiEk·Er2BEk(ω) +
∑
Ep

H Ep
h̄

ei Ep·Er2/h̄E2 Ep(ω) (8)

(ω − ω Ep + iε)D Ep(ω) =
H ∗Ep
h̄
A(ω) (9)

(ω − ω Ep + iε)A(ω)Ei Ep(ω) =
H ∗Ep
h̄

e−i Ep·Er1/h̄Ci(ω) i = 1, 2 (10)

where HEk and H ∗Ek are the matrix element corresponding to absorption and emission,

respectively, of a photon having wave vectorEk. H Ep andH ∗Ep are similarly defined for the
conversion electron. Equations (5)–(10) can be interpreted in a straightforward manner. For
example, equation (6) describes the amplitudeBk(ω) for production of a photon having wave
vectorEk. This can occur when the source nucleus emits a photon as described by the first term
on the right-hand side of equation (6), or when either nucleus at positionEri (i = 1 or 2) emits
a photon, the second and third terms on the right-hand side equation (6). The functions e−iEk·Eri
(i = 1, 2) designate the position where the photon emission takes place. The other equations
can be interpreted in a similar manner.

3. Solution of the equations

One can proceed to solve these equations. After making various substitutions, the resulting
summations can be converted to integrals and evaluated using well-known prescriptions [2–4].
In [4] the problem corresponding to an initial condition of an excited source nucleus andN

resonant absorber nuclei in the ground state has been treated. It has been shown [4] that this
problem has a closed-form solution if one restricts the calculation to forward scattering.

The fundamental equation for the source radiation is(
ω − ω0 + i

0

2h̄

)
A(ω) = 1 (11)

where the total width of the excited state,0, is the sum of the conversion-electron and radiative
widths

0 = γc + γr . (12)

The radiative width in this one-dimensional problem is

γr = 2L

h̄c
|Hk(ω)|2. (13)
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The simple form of equation (11) is due to the fact that, when the radiation goes from the
source nucleus to one of the ground state nuclei, we do not expect radiation to be re-radiated
back to the source nucleus. Macroscopic distances separate the absorber and detector nuclei
from the source nucleus thus any such processes are extremely rare.

Going back to the time domain, it can be easily shown using equation (11) that

a(t) = e0t/2h̄. (14)

The source nucleus decays in the normal exponential fashion uninfluenced by the absorber and
detector ‘nuclei’. The remaining equations become(

ω − ω′0 + i
0

2h̄

)
C1(ω) = − iγr

2h̄
ei(ω/c)x1A(ω) (15)(

ω − ω0 + i
0

2h̄

)
C2(ω) = − iγr

2h̄
ei(ω/c)x2A(ω)− iγr

2h̄
ei(ω/c)(x2−x1)C1(ω). (16)

The physical reason why equation (15) is different from equation (16) is due to the locations
of the absorber nucleus and the detector nucleus relative to the source nucleus. The
radiation coming from the detector nucleus, which is ‘downstream’ with respect to the
positive direction of thex axis from the absorber nucleus, does not ‘return’ to re-excite the
absorber nucleus. The conclusion of a careful analysis shows that only radiation coming
from nuclei ‘upstream’ from a given nucleus can give a contribution to the excitation of
that nucleus, i.e. the radiation effectively only goes forward. When considering an absorber
having many nuclei, the same conclusion holds [4]. The fact, noted above, that radiation
coming from the absorber nuclei does not get back to the source nucleus is consistent with this
conclusion.

Summarizing our results, we have

A(ω) = 1

ω − ω0 + i(0/2h̄)
(17)

C1(ω) = − iγr
2h̄

1

ω − ω′0 + i(0/2h̄)
ei(ω/c)(x1)A(ω) (18)

C2(ω) = − iγr
2h̄

1

ω − ω0 + i(0/2h̄)
ei(ω/c)(x2)A(ω)

− iγr
2h̄

1

ω − ω0 + i(0/2h̄)
ei(ω/c)(x2−x1)C1(ω). (19)

Substituting equations (17) and (18) into equation (19) gives

C2(ω) = − iγr
2h̄

1

(ω − ω0 + i(0/2h̄))2
ei(ω/c)x2

(
1− iγr

2h̄

1

ω − ω′0 + i(0/2h̄)

)
. (20)

The probability of having nucleus 2, the ‘detector nucleus’, excited is found from equation (20).

|C2(ω)|2 = γ 2
r

4h̄2

1

((ω − ω0)2 + (02/4h̄2))2

+
γ 3
r (γr − 20)

16h̄4

1

((ω − ω0)2 + (02/4h̄2))2

1

((ω − ω′0)2 + (02/4h̄2))
. (21)

The probability of having a conversion electron produced in the ‘detector’ is∫ +∞

−∞
|C2(ω)|2 dω = γ 2

r

4h̄2

∫ +∞

−∞

(
(ω − ω0)

2 +
02

4h̄2

)−2

dω

+
γ 3
r (γr − 20)

16h̄4

∫ +∞

−∞

(
(ω − ω0)

2 +
02

4h̄2

)−2(
(ω − ω′0)2 +

02

4h̄2

)−1

dω. (22)
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The first integral is a standard integral. One finds for the first integral a constant valueπh̄γ 2
r /0

3.
This constant value does not depend onω′0 the frequency corresponding to the absorber nucleus.
This contribution corresponds to the conversion-electron production due to radiation coming
directly from the source to the detector nucleus without interacting with the absorber. In the
recorded spectrum this will give a constant background analogous to the background observed
in a conventional M̈ossbauer experimental result. The second integral, which will be denoted
I (ω0, ω

′
0), can be calculated by means of contour integration. One finds

I (ω0, ω
′
0) =

πγ 3
r (γr − 20)

4h̄03

12a2 +1ω2
0

(4a2 +1ω2
0)

2
(23)

wherea and1ω0 are defined by the following expressions

a = 0

2h̄
(24)

1ω0 = ω0 − ω′0. (25)

Equation (23) gives the conversion-electron distribution as a function of the relative frequency
of the absorber nucleus relative to the source (and resonant detector) nucleus. This distribution
looks like a Lorentzian, although it is not a real one. The full width at half maximum of
this distribution can be calculated easily. One finds a value 1.4630. This value is close to
1.470, advanced in [5], where a heuristic approach has been given based the calculation of
the transmission integral. Also in [5], experiments are presented where this narrowing was
confirmed using119Sn. More recently this narrowing has been observed [6] again with119Sn.

In order to check the consistency of our model, one can calculate the resulting linewidth
in a conventional M̈ossbauer procedure using this approach. To do this, consider only the
source and absorber nucleus. Then imagine doing the conventional experiment by detecting
the conversion electrons produced in the absorber as a function ofω′0. The result is obtained
by solving equation (18) forC1(ω), finding the absolute value squared and integrating overω,
as done above forC2(ω). The full width at half maximum is found to be 20 as expected.

4. Summary and conclusions

We can summarize our results as follows. A quantum mechanical theory of a particular
Mössbauer-effect set-up, making use of a conventional source, a conventional absorber and a
resonant detector, consisting of ground-state nuclei with the same environment as the source
nuclei, has been developed. The model is based on perturbation theory in frequency domain.
The equations for the complete system of resonant nuclei, gamma radiation, and conversion
electrons have been solved. When counting-conversion electrons, produced by the resonant
detector nuclei, as a function of the Doppler velocity of the absorber with respect to the source
and resonant detector, the minimum linewidth is 1.4630. This linewidth is appreciably less than
the minimum linewidth of 20 obtained in a conventional M̈ossbauer-effect experiment. Thus,
for those experiments that profit from obtaining the highest possible energy resolution, the
proposed experimental configuration can be used to advantage. The theory can be extended
to the case where both the absorber and detector have an arbitrary thickness. Under such
conditions line broadening will naturally occur, as in conventional Mössbauer spectroscopy,
but the advantage of relatively narrower lines, compared to the conventional set-up, will remain.
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